$$
\begin{aligned}
& 2550 \\
& H W 3
\end{aligned}
$$

Solutions
(1) (a) This is already a 1

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
1 & 1 & 2 & 8 \\
-1 & -2 & 3 & 1 \\
3 & -7 & 4 & 10
\end{array}\right) \xrightarrow{R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & 1 & 2 & 8 \\
0 & -1 & 5 & 9 \\
3 & -7 & 4 & 10
\end{array}\right) \\
& \left.\begin{array}{c}
\uparrow \\
\begin{array}{l}
\text { make } \\
\text { these } \\
\text { zeros }
\end{array} \\
-3 R_{1}+R_{3} \rightarrow R_{3} \\
0
\end{array}\right)\left[\begin{array}{c}
\text { now } \\
\text { make } \\
\text { this } \\
\text { into a } \\
1
\end{array}\right] \\
& \left.\xrightarrow{-R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & 1 & 2 & 8 \\
0 & 1 & -5 & -9 \\
0 & -10 & -2 & -14
\end{array}\right) \quad \begin{array}{c}
\text { make this } \\
\text { a zero }
\end{array}\right] \\
& \xrightarrow{10 R_{2}+R_{3} \rightarrow R_{3}}\left(\begin{array}{ccc|c}
1 & 1 & 2 & 8 \\
0 & 1 & -5 & -9 \\
0 & 0 & -52 & -104
\end{array}\right) \quad\left[\begin{array}{c}
\text { make } \\
\text { this } \\
\text { into a } \\
1
\end{array}\right] \\
& \xrightarrow{-\frac{1}{52} R_{3} \rightarrow R_{3}}\left(\begin{array}{ccc|c}
1 & 1 & 2 & 8 \\
0 & 1 & -5 & -9 \\
0 & 0 & 1 & 2
\end{array}\right)
\end{aligned}
$$

The reduced system is:

$$
\begin{aligned}
\left(x_{1}+x_{2}+2 x_{3}\right. & =8 \\
x_{2}-5 x_{3} & =-9 \\
x_{3} & =2
\end{aligned}
$$

leading variables are x_{1}, x_{2}, x_{3}.
No free variables.

$$
\begin{aligned}
& x_{1}=8-x_{2}-2 x_{3} \\
& x_{2}=-9+5 x_{3} \\
& x_{3}=2
\end{aligned}
$$

Solve (3):
\Rightarrow
Plug into (2):

$$
\begin{aligned}
x_{2} & =-9+5 x_{3} \\
& =-9+5(2)=1
\end{aligned}
$$

Plug into (3):

$$
\begin{aligned}
x_{1} & =8-x_{2}-2 x_{3} \\
& =8-1-2(2) \\
& =3
\end{aligned}
$$

Thus, the system has only one solution.

$$
x_{1}=3, x_{2}=1, x_{3}=2
$$

(1) (b) make this into a 1

$$
\begin{aligned}
& \xrightarrow{\left(\begin{array}{ccc|c}
2 & 2 & 2 & 0 \\
-2 & 5 & 2 & 1 \\
8 & 1 & 4 & -1
\end{array}\right) \xrightarrow{\frac{1}{2} R_{1} \rightarrow R_{1}}\left(\begin{array}{ccc|c}
1 & 1 & 1 & 0 \\
2 R_{1}+R_{2}+R_{2} \\
\left(\begin{array}{ccc|c}
\text { make } \\
\text { these } \\
\text { zeros }
\end{array}\right. \\
8 & 5 & 2 & 1 \\
1 & 4 & -1
\end{array}\right)} \\
& \xrightarrow{-8 R_{1}+R_{3} \rightarrow R_{3}}\left(\begin{array}{ccc|c}
1 & 1 & 1 & 0 \\
0 & 7 & 4 & 1 \\
0 & -7 & -4 & -1
\end{array}\right) \quad\left[\begin{array}{c}
\text { make } \\
\text { this } \\
\text { into a } \\
1
\end{array}\right] \\
& \left.\xrightarrow{\frac{1}{7} R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & 1 & 1 & 0 \\
0 & 1 & 4 / 7 & 1 / 7 \\
0 & -7 & -4 & -1
\end{array}\right) \xrightarrow{\text { mace }} \begin{array}{c}
\text { this } \\
\text { zero }
\end{array}\right] \\
& \xrightarrow{7 R_{2}+R_{3} \rightarrow R_{3}}\left(\begin{array}{ccc|c}
1 & 1 & 1 & 0 \\
0 & 1 & 4 / 7 & 1 / 7 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

The reduced system is:

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =0 \\
x_{2}+\frac{4}{7} x_{3} & =\frac{1}{7} \\
0 & =0
\end{aligned}
$$

leading variables are x_{1}, x_{2}
Free variable is x_{3}

$$
\begin{align*}
& x_{1}=-x_{2}-x_{3} \tag{1}\\
& x_{2}=\frac{1}{7}-\frac{4}{7} x_{3} \tag{2}
\end{align*}
$$

Set free variables:

$$
x_{3}=t
$$

Solve (2):

$$
\frac{\text { Solve (1): }}{x_{1}=-x_{2}-x_{3}}=-\left(\frac{1}{7}-\frac{4}{7} t\right)-t=-\frac{1}{7}-\frac{3}{7} t
$$

Solve (1):

Solution: $\quad x_{1}=-\frac{1}{7}-\frac{3}{7} t$
where t

$$
x_{2}=\frac{1}{7}-\frac{4}{7} t
$$

is any real

$$
x_{3}=t
$$

So, there are an infinite number of solutions, one for each t.
For example, if $t=0$ then

$$
\begin{aligned}
& x_{1}=-\frac{1}{7}-\frac{3}{7}(0)=-\frac{1}{7} \\
& x_{2}=\frac{1}{7}-\frac{4}{7}(0)=\frac{1}{7} \\
& x_{3}=0
\end{aligned}
$$

is a solution.
Or if $t=1$, then

$$
\begin{aligned}
& x_{1}=-\frac{1}{7}-\frac{3}{7}(1)=-\frac{4}{7} \\
& x_{2}=\frac{1}{7}-\frac{4}{7}(1)=-\frac{3}{7} \\
& x_{3}=1
\end{aligned}
$$

is another solution.
And so on.
(1) (c)

$$
\left.\left(\begin{array}{cccc|c}
1 & -1 & 2 & -1 & -1 \\
2 & 1 & -2 & -2 & -2 \\
-1 & 2 & -4 & 1 & 1 \\
3 & 0 & 0 & -3 & -3
\end{array}\right) \quad \begin{array}{l}
\text { make } \\
\text { these } \\
\text { into } \\
\text { zeros }
\end{array}\right]
$$

$$
\xrightarrow[-3 R_{1}+R_{4} \rightarrow R_{4}]{\substack{-2 R_{1}+R_{2} \rightarrow R_{2} \\
R_{1}+R_{3} \rightarrow R_{3}}}\left(\begin{array}{cccc|c}
1 & -1 & 2 & -1 & -1 \\
0 & 3 & -6 & 0 & 0 \\
0 & 1 \\
0 & 3 & -2 & 0 & 0 \\
-6 & 0 & 0
\end{array}\right)
$$

make this a 1

$$
\xrightarrow{\substack{-3 R_{2}+R_{3} \rightarrow R_{3} \\
-3 R_{2}+R_{4} \rightarrow R_{4}}}\left(\begin{array}{rrrr|r}
1 & -1 & 2 & -1 & -1 \\
0 & 1 & -2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

The reduced system is:

$$
\begin{aligned}
x-y+2 z-w & =-1 \\
y-2 z & =0 \\
0 & =0 \\
0 & =0
\end{aligned}
$$

leading variables are x, y

Free variables are z, w

$$
\begin{align*}
& x=-1+y-2 z+w \tag{1}\\
& y=2 z \tag{2}
\end{align*}
$$

Set free variables: $z=t, w=s$
Solve (2): $y=2 z=2 t$
Solve (1): $\begin{aligned} x=-1+y-2 z+w & =-1+2 t \\ & =-1+5\end{aligned}$

Solution:

$$
\begin{array}{ll}
x=-1+s & \\
y=2 t & \text { where } t, s \\
z=t & \text { are any } \\
w=s & \text { real numbers }
\end{array}
$$

There are an infinite number of solutions. For example, setting $s=0$ and $t=0$ gives $x=0, y=0, z=0, w=0$.
Setting $s=1, t=2$ gives

$$
\begin{aligned}
& \text { setting } s=1, x, z=2, w=1 \\
& x=0, y=4, z=2
\end{aligned}
$$

(1) (d)

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
0 & -2 & 3 & 1 \\
3 & 6 & -3 & -2 \\
6 & 6 & 3 & 5
\end{array}\right) \xrightarrow{R_{1} \leftrightarrow R_{2}}\left(\begin{array}{ccc|c}
3 & 6 & -3 & -2 \\
0 & -2 & 3 & 1 \\
6 & 6 & 3 & 5
\end{array}\right) \\
& \xrightarrow[\text { make }]{1 / 3 R_{1} \rightarrow R_{1}}\left(\begin{array}{ccc|c}
1 & 2 & -1 & -2 / 3 \\
0 & -2 & 3 & 1 \\
6 & 6 & 3 & 5
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \xrightarrow{-6 R_{1}+R_{3} \rightarrow R_{3}}\left(\begin{array}{ccc|c}
1 & 2 & -1 & -2 / 3 \\
0 & -2 & 3 & 1 \\
0 & -6 & 9 & 27 / 3
\end{array}\right) \\
& \xrightarrow{\substack{\text { thoseros } \\
\text { ter }}} \begin{array}{lll|l}
\text { now } R_{2} \rightarrow R_{2} \\
\text { make zen }
\end{array}\left(\begin{array}{ccc|c}
1 & 2 & -1 & -2 / 3 \\
0 & 1 & -3 / 2 & -1 / 2 \\
0 & -6 & 9 & 27 / 3
\end{array}\right)
\end{aligned}
$$

$$
\xrightarrow[\substack{\text { reduced }}]{\substack{\text { now } \\
\text { make zeno } \\
\text { this a }}} \underset{\substack{\text { res }}}{\substack{R_{2}+R_{3} \rightarrow} R_{3}}\left(\begin{array}{ccc|c}
1 & 2 & -1 & -2 / 3 \\
0 & 1 & -3 / 2 & -1 / 2 \\
0 & 0 & 0 & 6
\end{array}\right)
$$

Answer

The system is: Need to put a 1 up here
(2)

$$
\left(\begin{array}{cc|c}
1 & -3 / 2 & -1 \\
0 & 1 & 3 / 4 \\
0 & 0 & -7 / 8
\end{array}\right)
$$

Now turn back into a system.

$$
\begin{aligned}
x_{1}-3 / 2 x_{2} & =-1 \\
x_{2} & =3 / 4 \\
0 & =-7 / 8
\end{aligned}
$$

Since we have

$$
0=-7 / 8
$$

this system has no solutions it is in con sis tent.
(2) (b) make into a 1

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
3 & 2 & -1 & -15 \\
5 & 3 & 2 & 0 \\
3 & 1 & 3 & 11 \\
-6 & -4 & 2 & 30
\end{array}\right) \xrightarrow{\frac{1}{3} R_{1} \rightarrow R_{1}}\left(\begin{array}{ccc|c}
1 & 2 / 3 & -1 / 3 & -5 \\
5 & 3 & 2 & 0 \\
3 & 1 & 3 & 11 \\
-6 & -4 & 2 & 30
\end{array}\right) \\
& \xrightarrow[\substack{\text { make th is } \\
\text { into } a 1 \\
\hline \\
-5 R_{1}+R_{2} \rightarrow R_{3} \rightarrow R_{3} \\
6 R_{1}+R_{4} \rightarrow R_{4}}]{\begin{array}{l}
-5
\end{array}}\left(\begin{array}{ccc|c}
1 & 2 / 3 & -1 / 3 & -5 \\
0 & -1 / 3 & 11 / 3 & 25 \\
0 & -1 & 4 & 26 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \xrightarrow[\text { make these zeros }]{-3 R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & 2 / 3 & -1 / 3 & -5 \\
0 & 1 & -11 & -75 \\
0 & -1 & 4 & 26 \\
0 & 0 & 0
\end{array}\right) \\
& \xrightarrow{R_{2}+R_{3} \rightarrow R_{3}}\left(\begin{array}{ccc|c}
1 & 2 / 3 & -1 / 3 & -5 \\
0 & 1 & -11 & -75 \\
0 & 0 & -7 & -49 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

$$
\xrightarrow{-\frac{1}{7} R_{3} \rightarrow R_{3}}\left(\begin{array}{ccc|c}
1 & 2 / 3 & -1 / 3 & -5 \\
0 & 1 & -11 & -75 \\
0 & 0 & 1 & 7 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Write out the

$$
\begin{aligned}
& x_{1}+\frac{2}{3} x_{2}-\frac{1}{3} x_{3}=-5 \\
& x_{2}-11 x_{3}=-75 \\
& x_{3}=7 \\
& 3
\end{aligned}
$$

(1) (3) gives $x_{3}=7$.
(2) Now plug into (2) to get

$$
\begin{aligned}
x_{2} & =-75+11(7) \\
& =2
\end{aligned}
$$

Now plug into (1) to get

$$
\begin{aligned}
& \text { Now } \begin{aligned}
x_{1} & =-5-\frac{2}{3}(2)+\frac{1}{3}(7) \\
& =-4
\end{aligned}
\end{aligned}
$$

Answer: $x_{1}=-4, x_{2}=2, x_{3}=7$
(2) (c) put a 1 here

$$
\begin{aligned}
& \left(\begin{array}{cc|c}
(4) & -8 & 12 \\
3 & -6 & 9 \\
-2 & 4 & -6
\end{array}\right) \xrightarrow{\frac{1}{4} R_{1} \rightarrow R_{1}}\left(\begin{array}{cc|c}
1 & -2 & 3 \\
3 & -6 & 9 \\
-2 & 4 & -6
\end{array}\right) \\
& -3 R_{1}+R_{2} \rightarrow R_{2} \rightarrow R_{3} \\
& \left(\begin{array}{cc|c}
1 & -2 & 3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Write down reduced system:

$$
\begin{array}{r}
x_{1}-2 x=3 \\
0=0 \\
0=0 \\
4 \tag{1}\\
x_{1}=3+2 x_{2}
\end{array}
$$

Set free variables:

$$
x_{2}=t
$$

Solve (1):

$$
x_{1}=3+2 t
$$

x_{1} is a leading variable
X_{2} is a free variable

Answer:

$$
\begin{aligned}
& x_{1}=3+2 t \\
& x_{2}=t
\end{aligned}
$$

where t is any real number

$$
\begin{aligned}
& 2(d) \\
& \left(\begin{array}{cccc|c}
0 & 10 & -4 & 1 & 1 \\
1 & 4 & -1 & 1 & 2 \\
3 & 2 & 1 & 2 & 5 \\
-2 & -8 & 2 & -2 & -4 \\
1 & -6 & 3 & 0 & 1
\end{array}\right) \\
& \xrightarrow{R_{1} \leftrightarrow R_{2}}\left(\begin{array}{cccc|c}
1 & 4 & -1 & 1 & 2 \\
0 & 10 & -4 & 1 & 1 \\
3 & 2 & 1 & 2 & 5 \\
-2 & -8 & 2 & -2 & -4 \\
1 & -6 & 3 & 0 & 1
\end{array}\right) \\
& \xrightarrow{-3 R_{1}+R_{3} \rightarrow R_{3}} \begin{array}{l}
2 R_{1}+R_{4} \rightarrow R_{4} \\
-R_{1}+R_{5} \rightarrow R_{5}
\end{array}\left(\begin{array}{cccc|c}
1 & 4 & -1 & 1 & 2 \\
0 & 10 & -4 & 1 & 1 \\
0 & -10 & 4 & -1 & -1 \\
0 & 0 & 0 & 0 & 0 \\
0 & -10 & 4 & -1 & -1
\end{array}\right) \begin{array}{l}
\text { notice } \\
\text { that } \\
R_{3} \text { is } \\
-R_{2} \\
\text { and } \\
R_{5} \text { is } \\
R_{2} \\
\text { so an } \\
\text { easy }
\end{array} \\
& \xrightarrow{\substack{R_{2}+R_{3} \rightarrow R_{3} \\
R_{2}+R_{5} \rightarrow R_{5}}}\left(\begin{array}{cccc|c}
1 & 4 & -1 & 1 & 2 \\
0 & 10 & -4 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \xrightarrow[\text { now }]{\substack{\text { now } \\
\text { make this } \\
\text { a } \\
\text { is as } \\
\text { follsus } \\
\text { simplify } \\
\hline}}
\end{aligned}
$$

$$
\xrightarrow{\frac{1}{10} R_{2} \rightarrow R_{2}}\left(\begin{array}{cccc|c}
1 & 4 & -1 & 1 & 2 \\
0 & 1 & -4 / 10 & 1 / 10 & 1 / 10 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

reduced system is:

$$
\begin{array}{r}
(x+4 y-z+w=2 \\
y-\frac{4}{10} z+\frac{1}{10} w=\frac{1}{10} \\
0=0 \\
0=0 \\
B \\
x=2-4 y+z-w \tag{2}\\
y=\frac{1}{10}+\frac{4}{10} z-\frac{1}{10} w
\end{array}
$$

Answer:

$$
\begin{aligned}
& x=\frac{8}{5}-\frac{3}{5} t-\frac{3}{5} s \\
& y=\frac{1}{10}+\frac{4}{10} t-\frac{1}{10} s \\
& z=t \quad \text { where } t \& s \\
& w=s \quad \text { can be any real }
\end{aligned}
$$

$x \& y$ are leading variables $z \& \omega$ are free variables

Set free variables:

$$
\begin{aligned}
& z=t \\
& w=s
\end{aligned}
$$

plug into (2):

$$
\frac{p l o g}{y=\frac{1}{10}+\frac{4}{10}} t-\frac{1}{10} s
$$

plug into (1):

$$
\begin{aligned}
\frac{p l o g}{} \text { into (1) } & =2-4\left(\frac{1}{10}+\frac{4}{10} t-\frac{1}{10} s\right) \\
& +t-5 \\
= & \frac{8}{5}-\frac{3}{5} t-\frac{3}{5} s
\end{aligned}
$$

(3) (a)

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
5 & -2 & 6 & 0 \\
-2 & 1 & 3 & 1
\end{array}\right) \xrightarrow{\frac{1}{5} R_{1} \rightarrow R_{1}}\left(\begin{array}{ccc|c}
1 & -\frac{2}{5} & \frac{6}{5} & 0 \\
-2 & 1 & 3 & 1
\end{array}\right) \\
& \xrightarrow{2 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & -\frac{2}{5} & \frac{6}{5} & 0 \\
0 & \frac{1}{5} & \frac{27}{5} & 1
\end{array}\right) \\
& \begin{array}{c}
\text { Make this } \\
\text { a zero }
\end{array} \\
& \xrightarrow{5 R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & -\frac{2}{5} & \frac{6}{5} & 0 \\
0 & 1 & 27 & 5
\end{array}\right)
\end{aligned}
$$

reduced system is:

$$
\left\{\begin{aligned}
x_{1}-\frac{2}{5} x_{2}+\frac{6}{5}\left(x_{3}\right) & =0 \\
\left(x_{2}\right)+27\left(x_{3}\right) & =5
\end{aligned}\right.
$$ are $x_{1} \& x_{2}$ free variables are x_{3}

$$
\begin{align*}
& x_{1}=\frac{2}{5} x_{2}-\frac{6}{5} x_{3} \tag{1}\\
& x_{2}=5-27 x_{3} \tag{2}
\end{align*}
$$

Set free variables:

$$
x_{3}=t
$$

plug into (2):

$$
x_{2}=5-27 t
$$

plug into (3):

Answer:

$$
\begin{aligned}
& x_{1}=2-12 t \\
& x_{2}=5-27 t \\
& x_{3}=t
\end{aligned}
$$

where t can be any real \#
(3) (b) we already have a 1 here

$$
\left(\begin{array}{rrrr|r}
1 & -2 & 1 & -4 & 1 \\
1 & 3 & 7 & 2 & 2 \\
1 & -12 & -11 & -16 & 5
\end{array}\right)
$$

$$
\begin{aligned}
& \xrightarrow[\substack{-R_{1}+R_{2} \rightarrow R_{2} \\
R_{1}+R_{3} \rightarrow R_{3}}]{ }\left(\begin{array}{cccc|c}
1 & -2 & 1 & -4 & 1 \\
0 & 5 & 6 & 6 & 1 \\
0 & -10 & -12 & -12 & 4
\end{array}\right) \\
& \xrightarrow{\frac{1}{5} R_{2} \rightarrow R_{2}}\left(\begin{array}{cccc|c}
1 & -2 & 1 & -4 & 1 \\
0 & 1 & 6 / 5 & 6 / 5 & 1 / 5 \\
0 & -10 & -12 & -12 & 4
\end{array}\right)
\end{aligned}
$$

$$
\xrightarrow{10 R_{2}+R_{3} \rightarrow R_{3}}\left(\begin{array}{cccc|c}
1 & -2 & 1 & -4 & 1 \\
0 & 1 & 6 / 5 & 6 / 5 & 1 / 5 \\
0 & 0 & 0 & 0 & 6
\end{array}\right)
$$

Write down the reduced system:

$$
\begin{aligned}
x_{1}-2 x_{2}+x_{3}-4 x_{4} & =1 \\
x_{2}+\frac{6}{5} x_{3}+\frac{6}{5} x_{3} & =1 / 5 \\
0 & =6
\end{aligned}
$$

Because we have $0=6$ there are no solutions to the system. It is inconsistent.

$$
\begin{aligned}
& (4)(a) \quad\left[\begin{array}{c}
p u t a \\
\text { here }
\end{array}\right. \\
& \left(\begin{array}{lll|l}
2 & 1 & 3 & 0 \\
1 & 2 & 0 & 0 \\
0 & 1 & 1 & 0
\end{array}\right) \xrightarrow{R_{1} \leftrightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & 2 & 0 & 0 \\
2 & 1 & 3 & 0 \\
0 & 1 & 1 & 0
\end{array}\right) \\
& \xrightarrow{-2 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & 2 & 0 & 0 \\
0 & -3 & 3 & 0 \\
0 & 1 & 1 & 0
\end{array}\right) \\
& \text { make } \begin{array}{l}
\text { mas a } \\
\text { this }
\end{array} \\
& \xrightarrow{-\frac{1}{3} R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & 2 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 1 & 1 & 0
\end{array}\right) \quad \begin{array}{cc}
\text { make } \\
\text { this } & \\
0
\end{array} \\
& \xrightarrow{-R_{2}+R_{3} \rightarrow R_{3}}\left(\begin{array}{ccc|c}
1 & 2 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 2 & 0
\end{array}\right)
\end{aligned}
$$

$$
\xrightarrow{\frac{1}{2} R_{3} \rightarrow R_{3}}\left(\begin{array}{ccc|c}
1 & 2 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Write down the reduced system:

$\left(x_{1}+2 x_{2}=0\right.$
$x_{2}-x_{3}=0$
$x_{3}=0$
:---
variables are
x_{1}, x_{2}, x_{3}
there are ne
free variables

(3) gives $x_{3}=0$
plug into (2) to get

$$
x_{2}=x_{3}=0
$$

Plug into (1) to get

$$
\frac{x_{1}=-2(0)=0}{3}
$$

Answer:

$$
\begin{aligned}
& x_{1}=0 \\
& x_{2}=0 \\
& x_{3}=0
\end{aligned}
$$

(4) (b)

$$
\begin{aligned}
& \begin{array}{l}
\left(\begin{array}{ccc|c}
(3) & 1 & 1 & 0 \\
5 & -1 & 1 & -1
\end{array}\right) \\
\xrightarrow{\frac{1}{3} R_{1} \rightarrow R_{1}} \\
\left(\begin{array}{lll|l}
121 / 3 & 1 / 3 & 1 / 3 & 0 \\
5 & -1 & 1 & -1
\end{array}\right)
\end{array} \\
& \xrightarrow{-5 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{cccc|c}
1 & 1 / 3 & 1 / 3 & 1 / 3 & 0 \\
0 & -8 / 3 & -2 / 3 & -8 / 3 & 0
\end{array}\right) \\
& \xrightarrow{-\frac{3}{8} R_{2} \rightarrow R_{2}}\left(\begin{array}{cccc|c}
1 & 1 / 3 & 1 / 3 & 1 / 3 & 0 \\
0 & 1 & 1 / 4 & 1 & 0
\end{array}\right)
\end{aligned}
$$

Write down the reduced system:

$$
\begin{array}{r}
x_{1}+\frac{1}{3} x_{2}+\frac{1}{3}\left(x_{3}\right)+\frac{1}{3} x_{4}=0 \\
x_{2}+\frac{1}{4}\left(x_{3}\right)+x_{4}=0 \\
x_{1}=-\frac{1}{3} x_{2}-\frac{1}{3} x_{3}-\frac{1}{3} x_{4} \\
x_{2}=-\frac{1}{4} x_{3}-x_{4} \tag{2}
\end{array}
$$ variables are x_{1}, x_{2} are x_{3}, x_{4}

assign free variables:

$$
\begin{aligned}
& x_{3}=S \\
& x_{4}=t
\end{aligned}
$$

plug into (2):

$$
x_{2}=-\frac{1}{4} s-t
$$

plug into (1):

$$
\begin{aligned}
& \frac{p l u g \text { into }(1):}{x_{1}}=-\frac{1}{3}\left(-\frac{1}{4} s-t\right)-\frac{1}{3} s-\frac{1}{3} t \\
& \\
& =-\frac{5}{12} s
\end{aligned}
$$

$(4)(c)$

$$
\begin{aligned}
& \left(\begin{array}{rrrr|r}
0 & 2 & 2 & 4 & 0 \\
1 & 0 & -1 & -3 & 0 \\
2 & 3 & 1 & 1 & 0 \\
-2 & 1 & 3 & -2 & 0
\end{array}\right) \\
& \xrightarrow{R_{1} \leftrightarrow R_{2}}\left(\begin{array}{cccc|c}
1 & 0 & -1 & -3 & 0 \\
0 & 2 & 2 & 4 & 0 \\
2 & 3 & 1 & 1 & 0 \\
-2 & 1 & 3 & -2 & 0
\end{array}\right) \\
& -2 R_{1}+R_{3} \rightarrow R_{3} \\
& 2 R_{1}+R_{4}+R_{4} \\
& \xrightarrow{R_{2} \leftrightarrow R_{4}}\left(\begin{array}{cccc|c}
1 & 0 & -1 & -3 & 0 \\
0 & 1 & 1 & -8 & 0 \\
0 & 3 & 3 & 7 & 0 \\
0 & 2 & 2 & 4 & 0
\end{array}\right)
\end{aligned}
$$ zeros

$$
\begin{aligned}
& \xrightarrow{\substack{-3 R_{2}+R_{3} \rightarrow R_{3} \\
-2 R_{2}+R_{4} \rightarrow R_{4}}}\left(\begin{array}{cccc|c}
1 & 0 & -1 & -3 & 0 \\
0 & 1 & 1 & -8 & 0 \\
0 & 0 & 0 & 31 & 0 \\
0 & 0 & 0 & 2 & 0
\end{array}\right) \\
& \begin{array}{l}
\text { make this } \\
\text { a } 1
\end{array} \\
& \xrightarrow{\frac{1}{31} R_{3} \rightarrow R_{3}}\left(\begin{array}{cccc|c}
1 & 0 & -1 & -3 & 0 \\
0 & 1 & 1 & -8 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 20 & 0
\end{array}\right) \\
& \begin{array}{l}
\text { make tum } \\
\text { a zero }
\end{array} \\
& \xrightarrow{-20 R_{3}+R_{y} \rightarrow R_{y}}\left(\begin{array}{cccc|c}
1 & 0 & -1 & -3 & 0 \\
0 & 1 & 1 & -8 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

reduced system is:

$$
\begin{array}{r}
w-y-3 z=0 \\
x+y-8 z=0 \\
z=0
\end{array}
$$

leading variables: w, x, z free variable: y

$$
\begin{align*}
& w=y+3 z \tag{11}\\
& x=-y+8 z \tag{2}\\
& z=0 \tag{3}
\end{align*}
$$

Assign free variable:

$$
y=t
$$

$$
\begin{aligned}
& \frac{\text { plug into (3): }}{z=0} \\
& \frac{p l u g \text { into (2): }}{x=-y+8 z}=-t
\end{aligned}
$$

plug into (1):

$$
w=y+3 z=t
$$

Answer:

$$
\begin{aligned}
& w=t \\
& x=-t \\
& y=t \\
& z=0
\end{aligned}
$$

t can be any real number

